Science

The Human Pangenome Project: a global resource to map genomic diversity

  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gibbs, R. A. The Human Genome Project changed everything. Nat. Rev. Genet. 21, 575–576 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, R. M. & Salzberg, S. L. Pan-genomics in the human genome era. Nat. Rev. Genet. 21, 243–254 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Need, A. C. & Goldstein, D. B. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 25, 489–494 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schneider, V. A. et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 27, 849–864 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustamante, C. D., Burchard, E. G. & De la Vega, F. M. Genomics for the world. Nature 475, 163–165 (2011). Emphasizes the importance of reference data from ancestral and diverse genomes, as well as stating that researchers should invest time and money into education and outreach to explain why studying global (and local) health is so important.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miga, K. H. & Wang, T. The need for a human pangenome reference sequence. Annu. Rev. Genomics Hum. Genet. 22, 81–102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018). A model for presenting genomes that aims to improve read mapping by representing genetic variation in the reference.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martiniano, R., Garrison, E., Jones, E. R., Manica, A. & Durbin, R. Removing reference bias and improving indel calling in ancient DNA data analysis by mapping to a sequence variation graph. Genome Biol. 21, 250 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R. et al. Building the sequence map of the human pan-genome. Nat. Biotechnol. 28, 57–63 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020). The sequence of the first complete human chromosome.

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. et al. The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445798 (2021). The first complete genome assembly issued from the T2T Consortium, which closed all remaining gaps in the GRCh38, including all acrocentric short arms, segmental duplications and human centromeric regions.

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vernikos, G., Medini, D., Riley, D. R. & Tettelin, H. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148–154 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Brief Bioinform. 19, 118–135 (2018).


    Google Scholar
     

  • Eizenga, J. M. et al. Pangenome graphs. Annu. Rev. Genomics Hum. Genet. 21, 139–162 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehm, H. L. et al. ClinGen—the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Popejoy, A. B. et al. The clinical imperative for inclusivity: race, ethnicity, and ancestry (REA) in genomics. Hum. Mutat. 39, 1713–1720 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popejoy, A. B. et al. Clinical genetics lacks standard definitions and protocols for the collection and use of diversity measures. Am. J. Hum. Genet. 107, 72–82 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonham, V. L. et al. Physicians’ attitudes toward race, genetics, and clinical medicine. Genet. Med. 11, 279–286 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Race, Ethnicity & Genetics Working Group. The use of racial, ethnic, and ancestral categories in human genetics research. Am. J. Hum. Genet. 77, 519–532 (2005).

    Article 

    Google Scholar
     

  • Dodson, M. & Williamson, R. Indigenous peoples and the morality of the Human Genome Diversity Project. J. Med. Ethics 25, 204–208 (1999).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Couzin-Frankel, J. Ethics. DNA returned to tribe, raising questions about consent. Science 328, 558 (2010).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dukepoo, F. C. The trouble with the Human Genome Diversity Project. Mol. Med. Today 4, 242–243 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fox, K. The illusion of inclusion—the “All of Us” research program and Indigenous peoples’ DNA. N. Engl. J. Med. 383, 411–413 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Devaney, S. A., Malerba, L. & Manson, S. M. The “All of Us” program and Indigenous peoples. N. Engl. J. Med. 383, 1892 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hudson, M. et al. Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. Nat. Rev. Genet. 21, 377–384 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Carroll, S. R., Herczog, E., Hudson, M., Russell, K. & Stall, S. Operationalizing the CARE and FAIR principles for Indigenous data futures. Sci. Data 8, 108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genome in a Bottle. NIST https://www.nist.gov/programs-projects/genome-bottle (updated 16 February 2022).

  • Jarvis, E. D. et al. Automated assembly of high-quality diploid human reference genomes. Preprint at bioRxiv https://doi.org/10.1101/2022.03.06.483034 (2021).

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with HiFiasm. Nat. Methods 18, 170–175 (2021). HiFiasm is a haplotype-resolved assembler specifically designed for PacBio HiFi reads that aims to represent haplotype information in a phased assembly graph.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30, 1291–1305 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schatz, M. C. et al. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. Cell Genom. 2, 100085 (2022). The AnVIL platform provides scalable solutions for genomic data access, analysis and education.

  • Li, H., Feng, X. & Chu, C. The design and construction of reference pangenome graphs with Minigraph. Genome Biol. 21, 265 (2020). The Minigraph toolkit has been used to efficiently construct a pangenome graph, which is useful for mapping and constructing graphs that encode structural variation.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen, Y., Eizenga, J. & Paten, B. Modelling haplotypes with respect to reference cohort variation graphs. Bioinformatics 33, i118–i123 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021). The use of long-read data from 64 human genomes to predict structural variants and the patterns of variation across diverse populations.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83–89 (2020).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011). Cactus is a highly accurate, reference-free multiple genome alignment program that is useful for studying general rearrangement and copy number variation.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pangenome Graph Builder. GitHub https://github.com/pangenome/pggb (2022).

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Spooner, W. et al. Haplosaurus computes protein haplotypes for use in precision drug design. Nat. Commun. 9, 4128 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arita, M., Karsch-Mizrachi, I. & Cochrane, G. The international nucleotide sequence database collaboration. Nucleic Acids Res. 49, D121–D124 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Clarke, L. et al. The 1000 Genomes Project: data management and community access. Nat. Methods 9, 459–462 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, L. et al. The International Genome Sample Resource (IGSR): a worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 45, D854–D859 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Courtot, M. et al. BioSamples database: an updated sample metadata hub. Nucleic Acids Res. 47, D1172–D1178 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445678 (2021).

  • Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Preprint at bioRxiv https://doi.org/10.1101/2021.07.12.452063 (2021). The importance of complete T2T genomes in novel variant discovery and of offering major improvements of variant calls within clinically relevant genes are highlighted.

  • Miller, D. E. et al. Targeted long-read sequencing identifies missing disease-causing variation. Am. J. Hum. Genet. 108, 1436–1449 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921.e90 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toh, C. & Brody, J. P. Evaluation of a genetic risk score for severity of COVID-19 using human chromosomal-scale length variation. Hum. Genomics 14, 36 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeberg, H. & Paabo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Okubo, K., Sugawara, H., Gojobori, T. & Tateno, Y. DDBJ in preparation for overview of research activities behind data submissions. Nucleic Acids Res. 34, D6–D9 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navarro Gonzalez, J. et al. The UCSC Genome Browser database: 2021 update. Nucleic Acids Res. 49, D1046–D1057 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stalker, J. et al. The Ensembl web site: mechanics of a genome browser. Genome Res. 14, 951–955 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. The Human Epigenome Browser at Washington University. Nat. Methods 8, 989–990 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU Epigenome Browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016). Analysis of sample descriptions included in the genome-wide association study catalogue indicates that some populations are still under-represented and left behind in studies of genomic medicine.

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mills, M. C. & Rahal, C. A scientometric review of genome-wide association studies. Commun. Biol. 2, 9 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulahannan, N. et al. Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure. Preprint at bioRxiv https://doi.org/10.1101/833590 (2019).

  • Liu, B., Guo, H., Brudno, M. & Wang, Y. deBGA: read alignment with de Bruijn graph-based seed and extension. Bioinformatics 32, 3224–3232 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Limasset, A., Cazaux, B., Rivals, E. & Peterlongo, P. Read mapping on de Bruijn graphs. BMC Bioinformatics. 17, 237 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heydari, M., Miclotte, G., Van de Peer, Y. & Fostier, J. BrownieAligner: accurate alignment of Illumina sequencing data to de Bruijn graphs. BMC Bioinformatics 19, 311 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 1001 Genomes. GenomeMapper. 1001 Genomes https://www.1001genomes.org/software/genomemapper_graph.html (accessed 2021).

  • Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, G. et al. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 21, 35 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rautiainen, M. & Marschall, T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol. 21, 253 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, C., Misra, S., Zhang, H., Dilthey, A. & Aluru, S. Accelerating sequence alignment to graphs. IEEE Int. Parallel and Distributed Processing Symp. (IPDPS) 451–461 (2019).

  • Dvorkina, T., Antipov, D., Korobeynikov, A. & Nurk, S. SPAligner: alignment of long diverged molecular sequences to assembly graphs. BMC Bioinformatics 21, 306 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokveld, T., Linthorst, J., Al-Ars, Z., Holstege, H. & Reinders, M. CHOP: haplotype-aware path indexing in population graphs. Genome Biol. 21, 65 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghaffaari, A. & Marschall, T. Fully-sensitive seed finding in sequence graphs using a hybrid index. Bioinformatics 35, i81–i89 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonnella, G., Niehus, N. & Kurtz, S. GfaViz: flexible and interactive visualization of GFA sequence graphs. Bioinformatics 35, 2853–2855 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kunyavskaya, O. & Prjibelski, A. D. SGTK: a toolkit for visualization and assessment of scaffold graphs. Bioinformatics 35, 2303–2305 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mikheenko, A. & Kolmogorov, M. Assembly Graph Browser: interactive visualization of assembly graphs. Bioinformatics 35, 3476–3478 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Beyer, W. et al. Sequence tube maps: making graph genomes intuitive to commuters. Bioinformatics 35, 5318–5320 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoyama, T. T., Sakamoto, Y., Seki, M., Suzuki, Y. & Kasahara, M. MoMI-G: modular multi-scale integrated genome graph browser. BMC Bioinformatics 20, 548 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ODGI. GitHub https://github.com/pangenome/odgi (2021).

  • Shlemov, A. & Korobeynikov, A. in Algorithms for Computational Biology (eds Holmes, I., Martín-Vide, C. & Vega-Rodríguez, M. A.) 80–94 (Springer, 2019).

  • Ebler, J. et al. Pangenome-based genome inference. Preprint at bioRxiv https://doi.org/10.1101/2020.11.11.378133 (2020).

  • Leggett, R. M. et al. Identifying and classifying trait linked polymorphisms in non-reference species by walking coloured de Bruijn graphs. PLoS ONE 8, e60058 (2013).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sibbesen, J. A. et al. Accurate genotyping across variant classes and lengths using variant graphs. Nat. Genet. 50, 1054–1059 (2018).

  • Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome Biol. 20, 291 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat. Commun. 10, 5402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button